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Theory of Surface Tension in Liquid 
Mixtures 
A. B. BHATIA.7 N. H. MARCH, and M. P. TOSlf 

Theoretical Chemistry Department, University of Oxford, 
1 South Parks Road, Oxford OX1 3TG. England 

(Received October 22, 1979) 

Equations determining the density profiles of a multicomponent liquid are first given in terms 
of the partial direct correlation functions in the presence of the surface. The fluctuation theory 
of surface tension is also generalized to liquid mixtures. 

The density gradient procedure simplifies the above problem to knowledge of direct correla- 
tion functions in the bulk mixture. For the binary case, the density profile equations are then 
usefully written in terms of numberconcentration correlation functions. The total density and 
surface segregation profiles are finally considered in a simplified model by utilizing the theory 
of conformal solutions. Such a model, though limited in practice, should apply, for example, 
to the Na-K alloy system. 

1 INTRODUCTION 

Two of us' have recently developed a phenomenological theory of the surface 
tension 0 of a liquid binary alloy in terms of the alloy isothermal com- 
pressibility, the liquid surface thickness, the concentration fluctuations and a 
size factor. 

In the present paper, we set out fully a first principles theory of the density 
profiles in a multicomponent system in terms of the partial direct correlation 
functions cij in the presence of a planar surface. This is discussed in section 2 
below while in section 3 the surface tension of liquid mixtures is calculated. 

Unfortunately, in practice, the required information on the partial direct 
correlation functions is unlikely to become available for some time yet. 
Therefore, in section 4, the simplified density profile equations resulting from 
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a density gradient expansion2v3 are expressed, for binary mixtures, in terms of 
number-concentration correlation functions. The relation to the pheno- 
menology of Bhatia and March' is thereby established. 

Finally, in section 5, the explicit form of these density profile equations is 
developed for the model of conformal solutions. Though this model is limited 
to systems where the size factor is not too large, it should apply to a liquid 
Na-K alloy, for example. 

2 DENSITY PROFILE EQUATIONS IN TERMS OF DIRECT 
CORRELATION FUNCTIONS IN PRESENCE OF SURFACE 

We first give below the argument of Lovett, Mou and Buff: generalized to 
multicomponent mixtures, for the equations determining the density profiles. 

Let ui(r) denote the dimensionless one-body potential per particle for 
species i 

ui(r) = POLi - Ui(r) ;  P = (k ,  T ) -  (2.1) 

Here V i ( r )  is the external potential for species i, while pi is its chemical 
potential. 

The system is considered to be open and at constant V and T. The single 
particle densities are then 

P L ~ )  = (Pi(r)> (2.2)  
where ( . . . ) denotes the ensemble average as usual. 

Given all the u,{r), the various pJ{r) are uniquely determined and vice-versa, 
at given V and T. Hence the quantities ui(r) can be regarded as functionals of 
the various pJ{r) and vice versa. One has then 

and 

ciJ{r, r') being the direct correlation functions already mentioned above. If 
ui(r) is written as 

ui(r) = ln(pi(r)A:) - Ci(r )  (2.5) 

where Ai = h(2xmik,T)- ' /2 ,  then 
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SURFACE TENSION IN LIQUID MIXTURES 23 1 

Now denoting the functional dependence of the quantity ui by 

ui(rl, Cpl(r), P Z ( ~ )  * * . pv(r)l) Ui(r1) say (2.7) 

ui(rl, Cpl(r + 6) .  pV(r + 611) = ui(rl + 6). (2.8) 

then translational invariance implies : 

Hence we find 

ui(rl + 6) - ui(rl) = Sd3rW(pJ{r + 6) - p,ir)) + 
j =  1 ' pJ i r )  

Taking the limit 6 + 0 yields 

(2.10) 

where in Eq. (2.10) we have used Eq. (2.4). 

becomes 
Ifthe external potential is now reduced to zero, i.e. Vui(r) = 0, then Eq. (2.10) 

w r  

or using Eq. (2.4) 

(2.1 1) 

(2.12) 

These then are the basic equations determining the density profiles, the 
partial direct correlation functions cij  being those in the presence of the surface. 

3 SURFACE TENSION OF MIXTURES 

Knowing the density profile and direct correlation function in a one-com- 
ponent liquid, the surface tension can be determined from a formula associated 
withthenamesofYvon andofTriezenbergandZwanzig5(TZ)Theequivalence 
of this formula, for a liquid with pair interaction potentials, to the well known 
theory of Kirkwood and Buff6 has recently been established by Schofield.' 
The generalization of the TZ argument to liquid mixtures is given below. 

To calculate the surface energy and surface tension, consider that the 
equilibrium profiles pi have gradient along the x-axis. Then the total energy 
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232 A. B. BHATIA, N. H. MARCH AND M. P. TOSl 

depends on the cross-sectional area of the fluid perpendicular to the x-axis. 
We focus attention on that surface which satisfies Gibbs equimolar criteria 
with respect to the species i and locate the origin of the Gibbs surface at 
(0, y, z). Then, if we take the system in the form of a cylinder of basal area a. 
we can write, for extension a from the Gibbs surface in phase I and extension b 
similarly in phase 11: 

a. J;fi(x)dx = a o [ a p ~  + bpf'] = Ni (3.1) 

where pf and p y  are the densities of species i in the bulk phases I and 11. 

fluctuation in the various p,(x), j = 1,2, 3, . . . , v, so that 
Let us write r for the two dimensional vector r(y, 2). Now if there is a small 

and such that 

JApJ(r, x)d2r dx = 0 for all j (3.3) 

then the change in the Helmholtz free energy A is 

From a direct generalization of the TZ argument we have, using (2.4), 

with 

ti j(q, xIx2) = cij{O, x l r  r, x2)eiq" d2r. I 
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SURFACE TENSION I N  LIQUID MIXTURES 233 

Substituting (3.5) and (3.8) in (3.4) we then find 

A A  = h O k B T  c Ip f (qx l )p~{qx2)KiAq ,  x 1 x 2 ) c I x 1  dx2. (3-9) 
i i  Q 

In this (quadratic approximation for AA) there is no mixing of different q, and 
we can consider the fluctuation of each q separately. 

For small q 

Ki,{q, ~ 1 x 2 )  = K $ ' ( x ~ x ~ )  + q2K$f)(x,x2) + * * (3.10) 

K!f)(x,x2) = 4 ciJ{r = 0, xl, T,  x2)r2 d2r (3.12) I 
and (3.9) becomes (omitting the sum over q) 

= $ a O k B T  IPf (qx 1 ) P (  J 4 x 2 ) K ! 3 x , x , ) d x ,  dX2 
i j  

+ h O k B  Tq2 c i j  ~ ~ f ( ~ x ~ ) p J { q x 2 ) K ! : l ( x , x 2 ) d x , d x 2  

+ ... (3.13) 

Now because of the fluctuation Api(r, x) in the density of species i, the location 
of the Gibbs surface also fluctuates. If x,(r) is the shift in the Gibbs surface at r 
we have 

/ I J p i ( x )  + Api(r, x)ldx = + xO(r)lpf + [b - x o ( r ) ~ p f ~  

or 

Thus 

X O ( T )  = - Ap,(r, x)dx 
AP ' J  i 

where Api = p !  - p!'. 
The area of the new surface is 

a = a, + 9 Id2rlVrxO(r)12 

where the integral is over the original area a, . 

(3.14) 

(3.15) 
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With the Fourier expanison 

XO(~) = 1 xo(q)exp(iq ' r )  
4 

we can write 

xo(q) = - x)dx APi 'I 

(3.16) 

(3.17) 

The change in area due to fluctuation is thus 

a - ao = $00 1 q2 I X0.k) l2 (3.18) 
4 

or for fluctuation of Api(r, x) of a given q 

a - a0 = 4a0421xo(4)12 (3.19) 

One can in principle determine p,{q, x) by minimizing (3.13) with respect to 
them, subject to a given change in the area of the surface, i.e. (3.19). According 
to TZ, this gives the same result as their heuristic procedure for a one- 
component system. 

We follow the heuristic procedure again below for the multicomponent 
case. Consider that a small fluctuation xo(q) in the surface has occurred. For 
small 4, this amounts to virtually a vertical shift. Then it is not unreasonable to 
suppose that the density profiles are all bodily shifted: i.e. 

PXX) -+ PXX - xo(4)) for a l l j  

and hence 

(3.20) 

Substituting (3.20) in (3.13) we then obtain 

In the limit q + 0 Au -, 0 and AA = 0. In other words we must have 

or 

(3.22) 
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SURFACE TENSION IN LIQUID MIXTURES 235 

Sufficient conditions for (3.22) to be true are 

12 K$y)(x1x2)dxz = 0 for each i(= 1 , 2 . .  . v). (3.23) 

These v-equations are just the equations (2.12) for determining density 
profiles. Substituting the result (3.22) in (3.21), using (3.19) and noting that 
surface tension r~ is given by 

we have 

(3.24) 

(3.25) 

which is the desired generalization of the TZ formula to multi-component 
mixtures. The same result can also be obtained by generalizing the one- 
component treatment based on the pressuredifference across acurved surface,* 
but we shall not go into details here. 

4 DENSITY GRADIENT FORM OF PROFILE EQUATIONS 

Though the density profile equations given in Eq. (2.12) are formally exact, it 
has been stressed that they require knowledge of the direct correlation func- 
tions in the presence of the surface. In the absence of such information, we 
turn to the density gradient expansion which leads to simplified Euler 
equations for the density  profile^.'.^ 

These may be written in terms of chemical potentials ,ul and ,uz as 

(4.1) i pi = ~ i C ~ i ( x > ,  pz(~)I  + Fi 

P2 = P2CPl(X), P Z ( 4 1  + Fz 

and 

Here p , ( x )  and p2(x) are the density profiles through the surface of com- 
ponents 1 and 2, as above, while F ,  and F2 aregiven by, with spatial derivatives 
denoted by pi  etc., 
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Finally, the quantities A i j  are given by 

A,, = - d3r r2ci,(r{p}) 
k B T  6 I (4.4) 

where ci j  are bulk direct correlation functions. 
Following Bhatia and T h ~ r n t o n , ~  it is helpful to work with the number N 

and concentration c direct correlation functions which we shall define through 

C N N ( ~ )  = a:cii(k) + a:czz(k) + 2aia2~12(k) 

c,c(k) = alaZCalCll(k) - a,c,z(k) + (a2 - 0 1 2 ( k ) I  

and 

= a:a:cc,,w + c22W - 2c12(k)I (4.5) 

Consistent with the above, we shall also work with the total density p(x)  = 
pl(x) + p2(x) and with the quantity, concentration c, and c2 (= 1 - cl), 

&) = c2 P l W  - ClP,(X) (4.6) 

which is a rather direct measure of the surface segregation (a, = pl/p, 
a, + a2 = 1). 

Using these quantities, we rewrite the Euler equations (4.1) in terms of 
A”, ANc and Acc defined as 

A” = c:A, ,  + 2~1~2A12  + ciA22 

1 kBT d2 
= - - -__ c dk)I + .. 

2 alaz dk2 k = O  

Acc = A l l  - 2A12 + A22 
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SURFACE TENSION IN LIQUID MIXTURES 237 

Then the Euler equations take the form 

(4.10) 

and 

Multiplying the first equation by p'(x) and the second by A'(x) and summing 
we find 

(4.12) 

This can be integrated to give the constant pressure P through the interface as 

4- $[A"P" 4- 2A~cp'A' AccA'] (4.13) 

For prescribed chemical potentials pl and p2, Eqs. (4.10) and (4.11) must be 
solved simultaneously to determine the total density profile p(x)  and the 
surface segregation profile A(x). Substitution of these profiles in Eq. (4.13) 
then leads to the pressure P.  

P = (ClPI + C Z P 2 ) P ( X )  + 011 - PZ)A(X) - $ ( P ( X ) ,  4 x ) )  

Since the Helmholtz free energy density $(x) can be written3 as 

Y(x)  = $(P(x), A(x)) + ~ [ A N N Q ' ~  + 2ANcp'A + AccA2] (4.14) 

it follows from the fact that the total Helmholtz free energy is 

that the surface tension is given by3 

(4.16) 
J - a  
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It should be noted that if A(x) = 0, the first Euler equation reduces to that 
of a one-component liquid, which will be exploited below. 

Furthermore, the approximation F ,  = F2 in Eqs. (4.1), which leads back3 
to the phenomenology of Bhatia and March,' can be seen from Eq. (4.11) to 
involve putting AN= and aA"/aA to zero in that equation, and A to zero in all 
but the first term on the right hand side. 

5 MODEL OF CONFORMAL SOLUTIONS 

Equations (4.10)-(4.12) take us as far as we can proceed generally with the 
density gradient theory of the surface segregation, which we can take to be 
the problem of determining A(x). 

However, we shall see below that further progress can be made if we intro- 
duce into the density gradient theory the model of conformal solutions. This 
model assumes the existence of a monatomic reference liquid, with atoms 
interacting via a pair potential +(r).  The alloy pair potentials are then gener- 
ated by 

4iXr) = aij4(4jr) (5.1) 

and the basic assumption of the theory is that the deviations ofaij and Aijfrom 
unity are small. This allows perturbation theory based on the properties of 
the reference liquid as the unperturbed problem to be applied. The thermo- 
dynamic properties of conformal solutions are discussed fully by Longuet- 
Higgins." The structural properties of a conformal solution are also 
known.''*12 

5.1 Scaling of density profile and surface tension in a 
one-component liquid 

Before going on to discuss the two-component liquid, our main interest here, 
let us consider what happens to the density profile of a one-component liquid 
when the pair potential 4(r )  is changed to u+(Ar). 

We can use the scaling property of the pair correlation function' to go from 
a bulk direct correlation function in the reference liquid, say co(r, T, p, z), z 
being the fugacity, to a new form c , ( k ;  up, A-  3 p ,  ~ ~ ' ~ 2 )  under scaling of &). 
One has also to use the scaling property of the chemical potential, first given 
by Longuet-Higgins as" 

3 
D P(B, P> = a/Jo(aB, 1- 3P) + - In 1, (5.2) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



SURFACE TENSION I N  LIQUID MIXTURES 239 

From the Euler equation of the density gradient method it is easy to verify 
that the density profile scales as 

(5.3) p(x )  = A3p0(Ax; UP, 1 - 3 p ,  u ~ / ~ z ) ,  

the subscript zero always indicating the reference liquid property. Therefore 
the surface tension is given by 

~ ( p ,  p, Z) = d 2 ~ , ( a p ,  1- 3p, ~ ~ " 2 ) .  (5.4) 

We should note that, from a corresponding states argument, GuggenheimI3 
had anticipated a result of this form. 

It is worth noting that, for a liquid alloy with arbitrary aij  and l i j ,  the 
assumption that A ( x )  is small would allow an approximation to the total 
density profile p(x,  c) in terms of the reference liquid profile po(x; P, p, z )  in 
Eq. (5.3). As will emerge in detail below, the natural scaling parameters are 
then the concentration dependent forms 

a = 1 + C C i C j ( 0 i j  - 1) 
i j  

and 
1 = 1 + 1 C i C , ( L i j  - 1). 

i j  

However, in this situation we caution that the use of Eq. (5.4) with a and 1 
chosen as in (5.5) and (5.6) will not yield a complete description of the 
concentration dependence of u because of terms of the same order which will 
arise from the surface segregation profile A(x) .  Therefore, using eqs (5.4)- 
(5.6) might be viewed as merely a relatively rough interpolation between the 
pure liquid surface tensions. 

5.2 

We summarize in Appendix 1 the results we need in order to write expressions 
for the quantities A", AN, and A,, appearing in the Euler eqs. (4.10) and 
(4.1 1) for the specific model of conformal solutions. These expressions are 

Euler equations for conformal solutions 

A" = A + (a - 1) eF1 + (1 - 1) .F2 - 2(A/p)A,c - (A/p)' d 9 ,  
= - ( a N C H I  + l N C H 2 )  - (A//p) dFt (5.7) 

A,, = dSFc 

where the concentration dependence has been made explicit through 

aNC = a l a l l  - a2a22 + (a2 - aha12 

I N C  = gill - 122) 

and 
d = 2a12  - a l l  - a22 
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240 A. B. BHATIA, N.  H .  MARCH A N D  M. P. TOSl 

together with Eqs. (5 .5)  and (5.6). The other quantities in Eq. (5.7), which are 
functions only of the density, are defined in Appendix 1. Of course, when we 
use this model to calculate surface tension in the density gradient framework, 
the constant densities and concentrations appearing above become functions 
of position. In particular, we have explicitly 

and 

(5.10) 

(5.1 1) 

where i3 etc refer to the bulk concentrations. Here we have used" A,, = 

To the extent that the parameters ai, - 1 and llj  - 1 are small, as is 
assumed in conformal solution theory, there are two types of parameter. In 
the first group are ii - 1 and ,? - 1 while in the second are iiNc, A,, and d. 
Basically the first group determine the variation of the total density profile 
p(x)  from the reference liquid in lowest order, while the second group deter- 
mine the surface segregation A(x)  which is first order in these parameters. The 
detailed equations are lengthy and since they are differential equations which 
cannot be integrated generally we shall restrict ourselves to exhibiting their 
structure. 

As discussed above for arbitrary ai, ahd A i j  again the total density profile is 
given in lowest order by scaling the reference liquid profile using Eqs. (5.3)$ 
(5.5) and (5.6). The same qualification8 made above apply to the surface 
tension obtained in this approximation as can be made more explicit by 
calculating do/dc in the alloy. The concentration dependence from the scaled 
form (5.4) is fully determined by the parameters ii and ,? whose concentration 
derivatives are proportional to ii,, and ANC rclpectively, If these quantities are 
different from zero, A(x)  would not be zero mid hence it can be seen that 
A(x) wouldcontribute termsofthesameorder as those tram thescaled reference 
liquid to the concentration dependence of the surface tension. 

Of course, an objective of conformal solution theory must be to allow A(x)  
to be calculated. To do so, we must return to the Euler Eq. (4.1 I), and examine 
its dependence on the small parameters of the conformal solution model. 
As the parameters of the second group introduced above, namely a,,, A,, and 
d are allowed to go to zero, A(x)  must clearly tend to zero. But in Eq. (4.11). 
there are individual terms which are an order of magnitude larger than those 

& A l l  + 122) -  
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SURFACE TENSION IN LIQUID MIXTURES 24 I 

depending explicitly on A. Clearly all terms of this order must cancel, leaving 
a second-order linear differential equation to be solved for A.  This equation 
reads 

where the quantity on the right-hand side is the second-order term of the 
quantity inside the brackets after expansion in the small parameters of the 
conformal solution model. Here G is given by 

(5.13) P" PI2 PI2 G = [4(r)go(r,  p )d3r  + H1 - - HI 7 + 9, 
P P P 

While we think it of interest that Eq. (5.12) is eventually examined by 
numerical methods, we caution that the conformal solution calculation of A N N  
etc may have to be taken to second-order in the small parameters to be totally 
consistent. 

6 DISCUSSION AND SUMMARY 

While a formally exact theory of surface segre4ation has been presented via 
the Euler eqs. (2.12), to imprement this requiresknowledge of the partial direct 
correlation functions in the presence of the surface; information not currently 
available. 

Therefore, we have utilized a density gradient expansion of the Euler 
equations, which in terms of number-concentration correlation functions 
leads to the forms (4.10) and (4.1 1). These determine the total density p ( x )  and 
the surface segregatiQn profile A(x) .  But even their solution currently presents 
formidable difficulties and in particular requires knowledge of the bulk direct 
correlation functions c i j  for all bulk densities from the liquid values to those of 
vapour. 

To make further progress, pair poteptial interactions in the liquid allpy 
have been assumed which scale from i'mmatorpic reference liquid. It can 
then be demonstrated that the total denFi;ty profile p(x )  is well described by 
concentration dependent scaling of the rGference liquid profile, provided A is 
small compared with p .  Even und& the'same conditions, A contributes 
significantly to the concentration dependence of the surface tension. 

Finally, the simplification of this scaled potential model afforded by 
co$o&al solution theory is shown to lead to a linear second-order differential 
equatibn for A(x). It would be of interest if this equation could be solved; we 
exp&t the conformal solution assumptions, though rather restrictive, to apply 
to the Na-K liquid alloy system. 
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Appendix 1 

Kernels of surface tension formula for conformal solutions in the 
density gradient framework 

We use the results of Parrinello et a/." to construct the partial structure 
factors of a conformal solution in the number-concentration repre~entation.~ 
The results can be written (a t  = p l ( x ) / p ,  a2 = 1 - a l )  

S N N ( k )  = Sdk) + (a - l)fi(k) + ( A  - 1)fAk) (Al.1) 

S N C ( k )  = - a l a 2 [ a N C h l ( k )  f n N C h 2 ( k ) l  (A1.2) 

and 

S c d k )  = a la2  + atat df,(k). (A1.3) 

The definitions of a, Ay a N C y  ANC and d have been given already in the main text. 
while S,(k) is the structure factor of the reference liquid. The other functions 
2Fl, F2, Fc, H1 and H 2  in Eqs. (5.7) are the Fourier transforms of the 
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following properties of the reference liquid 

(A1.8) 

Here go(‘) is the radial distribution function of the reference liquid, while g3 is 
the three-atom correlation function. 

We also require the Pearson-Rushbrooke relations between the N-C direct 

(A1.9) 

(A 1 .1  0) 

( A l . l l )  

(A 1.1 2) 

(A1.13) 

(A1.14) 

The equations for A” etc in the main text follow immediately using Eqs. 
(4.7)-(4.9). 
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The following abbreviations have been used in writing (5.7): 

all derivatives being evaluated at k = 0. 
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